If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2=60-20t
We move all terms to the left:
5t^2-(60-20t)=0
We add all the numbers together, and all the variables
5t^2-(-20t+60)=0
We get rid of parentheses
5t^2+20t-60=0
a = 5; b = 20; c = -60;
Δ = b2-4ac
Δ = 202-4·5·(-60)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-40}{2*5}=\frac{-60}{10} =-6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+40}{2*5}=\frac{20}{10} =2 $
| x^2+2x-117=0 | | -8(1-6x=88 | | 3×-4=7(x-2)-1 | | (1-3x)=-36-4x | | x+x^2=9.75 | | 11a+(-11a)=0 | | n=82n+2 | | 50x+14040=20x+12500 | | (2x+8)+(3x+16)+(4x-18)+(3x-7)+(4x-18)+(2x+25)=180 | | 0=3x+55 | | (7x+14)/3-(17-3x)/5=6x-(4x+2)/3-5 | | 8.2d+28.1=3.6d | | -6+8u=4+u | | 7=6p+8 | | 14040x+50=12500x+20 | | -3b-12=-76 | | 6y^2+8y-9;y=2 | | -1/3(9x-6)=-4-5 | | 13x+45)+(19x+3)=180 | | 1+1+1+1+1=5x1 | | xx6=108 | | 3+4x+1=16 | | 4(x-8)=7(x-4) | | 17.5x4.2=73.5 | | -2y+6=-y | | 1+8p-4p+5=2(p-3)-2(p-2 | | 15n/5+100/5=5n | | 46x5=16 | | 17.f+65=14 | | 10x-44=6x+12 | | 5=2+3600a | | 2=5+3600a |